Definite Integrals

1. The expression $\sum_{k=1}^{10} \left(1 + \frac{3k}{10}\right)^3 \cdot \frac{3}{10}$ is a Riemann sum approximation for which of the following?

(a)
$$\frac{3}{10} \int_{1}^{10} x^{3} dx$$

(b) $\int_{1}^{10} (1+x)^{3} dx$
(c) $\frac{3}{10} \int_{1}^{10} \left(1 + \frac{3x}{10}\right)^{3} dx$
(d) $\int_{1}^{4} x^{3} dx$
(e) $\frac{3}{10} \int_{1}^{4} x^{3} dx$

2. The expression $\frac{1}{10} \left(\left(\frac{1}{10} \right)^2 + \left(\frac{2}{10} \right)^2 + \left(\frac{3}{10} \right)^2 + \ldots + \left(\frac{20}{10} \right)^2 \right)$ is a Riemann sum approximation for which of the following expressions?

(a)
$$\int_{0}^{2} x^{2} dx$$

(b) $\int_{0}^{2} \left(\frac{x}{10}\right)^{2} dx$
(c) $\frac{1}{10} \int_{0}^{2} \left(\frac{x}{10}\right)^{2} dx$
(d) $\int_{0}^{20} x^{2} dx$
(e) $\frac{1}{10} \int_{0}^{2} x^{2} dx$

- 3. Explain why $\int_{-k}^{k} \cos(\theta) d\theta = 2 \int_{0}^{k} \cos(\theta) d\theta$
- 4. Suppose that $0 \le f(3) \le f(3.1)$. Is it necessarily that $\int_0^3 f(t) dt \le \int_0^{3.1} f(t) dt$? If so, why? If not, why not?
- 5. If g'(t) represents a child's rate of growth in pounds per year, which of the following expressions represents the increase in the child's weight (in pounds) between years 2 and 5?

a.
$$\int_{2}^{5} g'(t) dt$$

b. $g'(5) - g'(2)$
c. $\int_{5}^{2} g'(t) dt$
d. $\frac{g'(5) - g'(2)}{5 - 2}$

- e. None of these expressions represents the increase in the child's weight (in pounds) between years 2 and 5.
- 6. Suppose f(x) > 0 and f'(x) < 0 for $2 \le x \le 4$. Which of the following approximations of $\int_2^4 f(x) dx$ is the largest?
 - a. R_4
 - **b.** L_4
 - c. M_4
 - d. They are all equal.
 - e. There is not enough information provided to determine which approximation is largest.
- 7. Let r(t) represent the rate at which water drains from a tank (in gallons per minute) and let t represent the number of minutes elapsed since water started draining from the tank. Which

of the following best describes the meaning of $\int_{1}^{4} r(t) dt$?

- (a) The average rate at which water drains from the tank from 1 minute to 4 minutes after water started draining from the tank.
- (b) The number of gallons of water drained from the tank 3 minutes after water started draining from the tank.
- (c) The change in the rate at which water drains from the tank from 1 minute to 4 minutes after water started draining from the tank.
- (d) The change in the number of gallons of water drained from the tank from 1 minute to 4 minutes after water started draining from the tank.
- (e) None of these.

8. If f(x) varies at a constant rate of 4 with respect to x, then $\int_{f(x)}^{f(x+2)} 10 dt =$

(a) 5

- (b) 20
- (c) 40
- (d) 80
- (e) There is not enough information provided to compute this integral
- 9. Ana met with some friends at District Bicycles in downtown Stillwater to go on a bike ride. Let v(t) represent Ana's velocity (in miles per hour) t hours after she left the bike shop.

Which of the following best describes the meaning of $\int_{0.5}^2 v(t) dt$?

- (a) The change in Ana's velocity from 0.5 hours to 2 hours after she left the bike shop
- (b) The change in Ana's distance away from the bike shop from 0.5 hours to 2 hours after she left the bike shop
- (c) Ana's average speed from 0.5 hours to 2 hours after she left the bike shop
- (d) Ana's distance away from the bike shop 1.5 hours after she left the bike shop
- (e) The time (in hours) it took Ana to cycle from 0.5 miles from the bike shop to 2 miles from the bike shop
- 10. How many values of k in the interval $\left[-\frac{\pi}{2}, \pi\right]$ satisfy the equation $\int_0^k \sin(4x) dx = 0$? (The graph of $f(x) = \sin(4x)$ is given below.)

- (a) 0
- (b) 1
- (c) 3
- (d) 4
- (e) 7